30 research outputs found

    Unsupervised amplitude and texture classification of SAR images with multinomial latent model

    Get PDF
    International audienceWe combine both amplitude and texture statistics of the Synthetic Aperture Radar (SAR) images for modelbased classification purpose. In a finite mixture model, we bring together the Nakagami densities to model the class amplitudes and a 2D Auto-Regressive texture model with t-distributed regression error to model the textures of the classes. A nonstationary Multinomial Logistic (MnL) latent class label model is used as a mixture density to obtain spatially smooth class segments. The Classification Expectation-Maximization (CEM) algorithm is performed to estimate the class parameters and to classify the pixels. We resort to Integrated Classification Likelihood (ICL) criterion to determine the number of classes in the model. We present our results on the classification of the land covers obtained in both supervised and unsupervised cases processing TerraSAR-X, as well as COSMO-SkyMed data

    SOMPT22: A Surveillance Oriented Multi-Pedestrian Tracking Dataset

    Full text link
    Multi-object tracking (MOT) has been dominated by the use of track by detection approaches due to the success of convolutional neural networks (CNNs) on detection in the last decade. As the datasets and bench-marking sites are published, research direction has shifted towards yielding best accuracy on generic scenarios including re-identification (reID) of objects while tracking. In this study, we narrow the scope of MOT for surveillance by providing a dedicated dataset of pedestrians and focus on in-depth analyses of well performing multi-object trackers to observe the weak and strong sides of state-of-the-art (SOTA) techniques for real-world applications. For this purpose, we introduce SOMPT22 dataset; a new set for multi person tracking with annotated short videos captured from static cameras located on poles with 6-8 meters in height positioned for city surveillance. This provides a more focused and specific benchmarking of MOT for outdoor surveillance compared to public MOT datasets. We analyze MOT trackers classified as one-shot and two-stage with respect to the way of use of detection and reID networks on this new dataset. The experimental results of our new dataset indicate that SOTA is still far from high efficiency, and single-shot trackers are good candidates to unify fast execution and accuracy with competitive performance. The dataset will be available at: sompt22.github.ioComment: 18 pages, 3 figures, 9 tables, ECCV 202

    Unsupervised Domain Adaptation for Semantic Segmentation using One-shot Image-to-Image Translation via Latent Representation Mixing

    Full text link
    Domain adaptation is one of the prominent strategies for handling both domain shift, that is widely encountered in large-scale land use/land cover map calculation, and the scarcity of pixel-level ground truth that is crucial for supervised semantic segmentation. Studies focusing on adversarial domain adaptation via re-styling source domain samples, commonly through generative adversarial networks, have reported varying levels of success, yet they suffer from semantic inconsistencies, visual corruptions, and often require a large number of target domain samples. In this letter, we propose a new unsupervised domain adaptation method for the semantic segmentation of very high resolution images, that i) leads to semantically consistent and noise-free images, ii) operates with a single target domain sample (i.e. one-shot) and iii) at a fraction of the number of parameters required from state-of-the-art methods. More specifically an image-to-image translation paradigm is proposed, based on an encoder-decoder principle where latent content representations are mixed across domains, and a perceptual network module and loss function is further introduced to enforce semantic consistency. Cross-city comparative experiments have shown that the proposed method outperforms state-of-the-art domain adaptation methods. Our source code will be available at \url{https://github.com/Sarmadfismael/LRM_I2I}

    An hierarchical approach for model-based classification of SAR images

    Get PDF
    We propose an unsupervised classification algorithm for high resolution Synthetic Aperture Radar (SAR) images based on Classification Expectation-Maximization (CEM). We combine the CEM algorithm with the hierarchical agglomeration strategy and a model order selection criterion called Integrated Completed Likelihood (ICL) to get rid of the initialization and the model order selection problems of the EM algorithm. We exploit a mixture of Nakagami densities for amplitudes and a Multinomial Logistic (MnL) latent model for class labels to obtain spatially smooth class segments. We test our algorithm on TerraSAR-X data

    Unsupervised Classification of SAR Images using Hierarchical Agglomeration and EM

    Get PDF
    We implement an unsupervised classification algorithm for high resolution Synthetic Aperture Radar (SAR) images. The foundation of algorithm is based on Classification Expectation-Maximization (CEM). To get rid of two drawbacks of EM type algorithms, namely the initialization and the model order selection, we combine the CEM algorithm with the hierarchical agglomeration strategy and a model order selection criterion called Integrated Completed Likelihood (ICL). We exploit amplitude statistics in a Finite Mixture Model (FMM), and a Multinomial Logistic (MnL) latent class label model for a mixture density to obtain spatially smooth class segments. We test our algorithm on TerraSAR-X data

    Unsupervised amplitude and texture based classification of SAR images with multinomial latent model

    Get PDF
    We combine both amplitude and texture statistics of the Synthetic Aperture Radar (SAR) images for classification purpose. We use Nakagami density to model the class amplitudes and a non-Gaussian Markov Random Field (MRF) texture model with t-distributed regression error to model the textures of the classes. A non-stationary Multinomial Logistic (MnL) latent class label model is used as a mixture density to obtain spatially smooth class segments. The Classification Expectation-Maximization (CEM) algorithm is performed to estimate the class parameters and to classify the pixels. We resort to Integrated Classification Likelihood (ICL) criterion to determine the number of classes in the model. We obtained some classification results of water, land and urban areas in both supervised and unsupervised cases on TerraSAR-X, as well as COSMO-SkyMed data

    Unsupervised Amplitude and Texture Classification of SAR Images With Multinomial Latent Model

    Full text link

    SAR image classification with non-stationary multinomial logistic mixture of amplitude and texture densities

    Get PDF
    We combine both amplitude and texture statistics of the Synthetic Aperture Radar (SAR) images using Products of Experts (PoE) approach for classification purpose. We use Nakagami density to model the class amplitudes. To model the textures of the classes, we exploit a non-Gaussian Markov Random Field (MRF) texture model with t-distributed regression error. Non-stationary Multinomial Logistic (MnL) latent class label model is used as a mixture density to obtain spatially smooth class segments. We perform the Classification Expectation-Maximization (CEM) algorithm to estimate the class parameters and classify the pixels. We obtained some classification results of water, land and urban areas in both supervised and semi-supervised cases on TerraSAR-X data

    Blind source separation from multi-channel observations with channel-variant spatial resolutions

    Get PDF
    We propose a Bayesian method for separation and reconstruction of multiple source images from multi-channel observations with different resolutions and sizes. We reconstruct the sources by exploiting each observation channel at its exact resolution and size. The source maps are estimated by sampling the posteriors through a Monte Carlo scheme driven by an adaptive Langevin sampler. We use the t-distribution as prior image model. All the parameters of the posterior distribution are estimated iteratively along the algorithm. We experimented the proposed technique with the simulated astrophysical observations. These data are normally characterized by their channel-variant spatial resolution. Unlike most of the spatial-domain separation methods proposed so far, our strategy allows us to exploit each channel map at its exact resolution and size.The authors would like to thank Anna Bonaldi,(INAF, Padova, Italy) and Bulent Sankur, (Bogazici University, Turkey) for their valuable discussions. The simulated maps are courtesy of the Planck working group on diffuse component separation (WG2.1)

    Adaptive Langevin Sampler for Separation of t-Distribution Modelled Astrophysical Maps

    Full text link
    We propose to model the image differentials of astrophysical source maps by Student's t-distribution and to use them in the Bayesian source separation method as priors. We introduce an efficient Markov Chain Monte Carlo (MCMC) sampling scheme to unmix the astrophysical sources and describe the derivation details. In this scheme, we use the Langevin stochastic equation for transitions, which enables parallel drawing of random samples from the posterior, and reduces the computation time significantly (by two orders of magnitude). In addition, Student's t-distribution parameters are updated throughout the iterations. The results on astrophysical source separation are assessed with two performance criteria defined in the pixel and the frequency domains.Comment: 12 pages, 6 figure
    corecore